# Preuves Interactives et Applications

Burkhart Wolff

www.lri.fr/~wolff/teach-material/2020-2021/M2-CSMR/index.html

Université Paris-Saclay

### Automated Proof Techniques in Isabelle/HOL: An Introduction

# Revisions

- Elementary apply-style
   (backward) proofs
- Elementary attributed (forward) proofs
- Advanced apply-style proof techniques

### Introduction to more Advanced Proof Techniques

- Induction and case-splitting
- Rewriting
- Tableaux provers
- Paramodulation prover
- Presburger arithmetics prover
- A magic device: sledgehammer

### Revision: Proof Commands

• Simple (Backward) Proofs:

```
lemma <thmname> :
  [ <contextelem>+ shows ]"<φ>"
  <proof>
```

- where <contextelem> declare elements of a proof context  $\Gamma$  (list of assumptions)
- where <proof> are
  - high-level proof method by(simp), by(auto), by(metis),
     by(arith) or the ellipses sorry and oops
  - apply-style ("imperative") proofs, and
  - structured ("declarative") proofs.

# Revision: Proof Commands

• Core of structured proofs:

```
proof (<method>)
  [case - fix - assumes - defs- have-]
  show ``<goal>'' <proof>
next
  ...
next
  [case - fix - assumes - defs- have-]
  show ``<goal>'' <proof>
qed
```

 ... a switch from procedural to declarative style can be done by rephrasing the goals

 low-level procedures and versions with explicit substitution:



$$\mathbf{x}_1 = \mathbf{w} \phi_1 \mathbf{w}$$
 and  $\mathbf{x}_n = \mathbf{w} \phi_n$ 

low-level methods:

- assumption (unifies conclusion vs. a premise)
- subst [(asm)] <thmname>

does one rewrite-step

(by instantiating the HOL subst-rule)

rule <thmname>, rule\_tac <subst> in <thmname>

PROLOG - like resolution step using HO-Unification

- erule <thmname>, erule\_tac <subst> in <thmname>

elimination resolution (for ND elimination rules)

drule <thmname>, drule\_tac <subst> in <thmname>,

destruction resolution (for ND destriction rules)

B. Wolff - M1-PIA

• Local forward proof constructions by attributes

| _ | <pre><thm>[THEN <thm>]</thm></thm></pre> | (unifies conclusion vs. premise) |
|---|------------------------------------------|----------------------------------|
| _ | <thm>[OF <thm>]</thm></thm>              | (unifies premise vs. conclusion) |
| _ | <pre><thm>[symmetric] (</thm></pre>      | flips an equation)               |

- <thm>[of (<term> | \_)\*] (instantiates variables)

- <thm>[simp] (simplifies a thm)

- <thm>[simp only: <thm>] (simplifies a thm)

• advanced methods:

insert <thmname>, insert <thmname>["[" of <subst>"]"]

inserts local and global facts into assumptions

induct\_tac "φ", induct "φ" [arbitrary : "<variable>"]

searches for appropriate induction scheme using type information and instantiates it

case\_tac "φ", cases "φ",

searches for appropriate case splitting scheme using type information and instantiates it

# Rewriting

Automated Proofs

#### Supports Rewriting, in particular:

- Regular rewriting
- Rewriting of HO-Patterns,
- Ordered Rewriting
- Conditional Rewriting
- Context Rewriting
- Automatic Case-Splitting

INSTRUMENTATION NECESSARY, so it is necessary to tell which rule should be used HOW. Simplification is quite predictable, using[[simp\_trace]] shuts on tracing of the rewriter

#### Regular Rewriting:

• Left-right of rewriting of rules of the form:

 $c t_1 ... t_n = e$ 

where  $c t_1 \dots t_n$  is the pattern ( $c \in C$ ), which linear (all free variables distinct) and

$$FV(t_1) \cup \dots FV(t_n) \supseteq FV(e)$$

apply(simp add: <thm>)

Regular Rewriting: Examples.

Suc(x + y) = x + Suc(y) (a # A) @ B) = a # (A @ B) ... (many computational rules resulting from "fun" or "primrec")

True  $\land X = X$ (a + b) + c = a + (b + c) if True then b else c = b

. . .

#### Higher-order Patterns:

- constant head, i.e. of the form  $c t_1 \dots t_n$
- linear in free variables,  $FV(t_1) \cup ... FV(t_n) \supseteq FV(e)$
- $\lambda$ -expressions !
- All Higher-Order Variables occur only in the form:

 $F(x_1 \dots x_n)$  for distinct  $x_i$ 

Example:

 $\forall (\lambda \ x. \ \mathsf{P}(x) \land \ \mathsf{Q}(x)) = \forall (\lambda \ x. \ \mathsf{P}(x)) \land (\forall (\lambda \ x. \mathsf{Q}(x)))$ 

#### Supports Ordered Rewriting:

 There is an implicit wf-ordering on terms. Rewriting is only done if the re-written term is smaller.

**Example commutativity:** a+b = b+a

With a little trickery, one can have ACI rewriting:

| $(P \lor Q \lor R) = (Q \lor P \lor R)$   |
|-------------------------------------------|
| $(P \lor Q) = (Q \lor P)$                 |
| $((P \lor Q) \lor R) = (P \lor Q \lor R)$ |
| $(P \lor Q \lor R) = (Q \lor P \lor R)$   |
| $(P \lor Q) = (Q \lor P)$                 |
| $(A \lor A) = A$                          |
| $(A \lor A \lor B) = (A \lor B)$          |
|                                           |

B. Wolff - M1-PIA

Automated Proofs

#### Supports Rewriting, in particular:

Conditional Rewriting

if\_P: 
$$P \Longrightarrow (if P then x else y) = x$$

if\_not\_P: 
$$\neg P \Longrightarrow$$
 (if P then x else y) = y

apply(simp add: if\_P if\_not\_P)

(Not necessary, somewhere in the library it is stated: declare if\_P [simp] if\_not\_P [simp] ) ... )

#### Supports Rewriting, in particular:

- Context Rewriting
  - HOL.if\_cong:

 $b = c \Longrightarrow$ 

$$c \Longrightarrow x = u) \Longrightarrow$$

$$(\neg c \Longrightarrow y = v) \Longrightarrow$$

(if b then x else y) = (if c then u else v)

HOL.conj\_cong:  

$$P = P' \Longrightarrow (P' \Longrightarrow Q = Q') \Longrightarrow (P \land Q) = (P' \land Q')$$

#### apply(simp cong: if\_cong)

#### Supports Rewriting, in particular:

Automatic Case-Splitting

(by a new type of rule which is NOT constant head)

split\_if\_asm: P (if Q then x else y) = ( $\neg$  (Q  $\land \neg$  P x  $\lor \neg$  Q  $\land \neg$  P y))

split\_if: P (if Q then x else y) = ((Q  $\longrightarrow$  P x)  $\land$  (¬ Q  $\longrightarrow$  P y))

#### For any data type (example: Option):

Option.option.split\_asm:

P (case x of None  $\Rightarrow$  f1 | Some x  $\Rightarrow$  f2 x) =

(¬ (x = None ∧ ¬ P f1 ∨ (∃a. x = Some a ∧ ¬ P (f2 a))))

Option.option.split:

P (case x of None  $\Rightarrow$  f1 | Some x  $\Rightarrow$  f2 x) =

 $((x = None \longrightarrow P f1) \land (\forall a. x = Some a \longrightarrow P (f2 a)))$ 

apply(simp split: split\_if\_asm split\_if)

### Tableaux Prover

Automated Proofs

# fast, blast and auto

#### Tableaux Provers going back to LeanTAP

- For Logic terms and Set terms
- Uses all rules classified as
  - introduction rule (keyword: intro) works on conclusion of a goal
  - elimination rule (keyword: elim) works on assumptions of a goal
  - destruction drule (keyword:: dest) works on assumptions of a goal applies destructively (eg. modus ponens)
  - frule works on assumptions of a goal, applies non-destructively

# fast, blast and auto

#### fast

- will apply safe intro/elim/drule's blindly
- (these are rules like conjl, conjE, disjE, ... alll, exE, ... Rules that will transform a subgoal into an equivalent one, without loosing "logical content")
- with backtrack on unsafe rules
  - (refines a subgoal into a logically stronger one, can lead into a dead end).
  - fast works for HO-Terms, but is fairly slow slow

#### blast

• dito, but resticted to first-order reasoning

#### auto

• intertwines simp and blast

# fast, blast and auto

#### blast

- works similarly like fast, but is resticted to first-order reasoning
- Substantially faster than fast, can treat transitivity rules.

auto

intertwines simp, blast, and fast

- advanced automated procedures:
  - simp [add: <thmname>+] [del: <thmname>+] [split: <thmname>+] [cong: <thmname>+]
  - auto [simp: <thmname>+] [intro: <thmname>+] [intro [!]: <thmname>+] [dest: <thmname>+] [dest [!]: <thmname>+] [elim: <thmname>+] [elim[!]: <thmname>+]

### Paramodulation Prover

 another automated procedures based on ordered paramodulation calculus (Canonical ref: http://www.gilith.com/papers/metis.pdf)

#### — metis <thmname>+

$$\frac{A_{1} \vee \cdots \vee A_{n}}{A_{1} \vee \cdots \vee A_{n}} \operatorname{AXIOM} [A_{1}, \dots, A_{n}] \qquad \qquad \overline{L \vee \neg L} \operatorname{ASSUME} L$$

$$\frac{A_{1} \vee \cdots \vee A_{n}}{A_{1}[\sigma] \vee \cdots \vee A_{n}[\sigma]} \operatorname{INST} \sigma \qquad \qquad \frac{A_{1} \vee \cdots \vee A_{n}}{A_{i_{1}} \vee \cdots \vee A_{i_{m}}} \operatorname{FACTOR}$$

$$\frac{A_{1} \vee \cdots \vee L \vee \cdots \vee A_{m} \qquad B_{1} \vee \cdots \vee D_{n}}{A_{1} \vee \cdots \vee A_{m} \vee B_{1} \vee \cdots \vee B_{n}} \operatorname{RESOLVE} L$$

### Linear Arithmetic Prover

 advanced automated procedures based on Coopers Algorithm for linear Presburger Arithmetics.

(Chaieb, Nipkow. Proof Synthesis and Reflection for Linear Arithmetic. J. Automated Reasoning, 41:33–59, 2008)

arith

1/2/21

Automated Proofs

# The Sledgehammer Interface (external provers)

Automated Proofs

### Magic Device:

- sledgehammer command.
  - asks well-known automatic first-order theorem provers such as
    - Vampire (binary resolution and superposition)
    - E (FOL-Eq saturation prover)
    - CVC4 (SMT prover)
    - Z3 (SMT prover)
  - ... if they can construct a proof based on all Isabelle theorems existing at this point, reconstructs an Isabelle proof.
  - does not work for proofs involving (deep) HO-Reasoning and/or induction.

### Conclusion

- Isabelle focusses on interactive proofs (enabling presentation of intermediate steps, and structuring of proofs and prover instrumentations)
- ... but this does not mean that there are no automatic proof techniques available and that classical ATP's are "better" in that sense ...
- Highly-tuned (=competition) ATPs can be faster, though, due to more aggressive compilations